本書系統(tǒng)地介紹了等離子體物理學(xué)的基本理論及其在很多重要等離子體現(xiàn)象中的應(yīng)用。本書內(nèi)容全面,結(jié)構(gòu)合理,闡述清晰。作者注重表達(dá)的簡潔性,沒有拘泥于形式,對自學(xué)和進(jìn)階很有好處。從統(tǒng)計(jì)動力學(xué)討論等離子體現(xiàn)象是本書的一大特色。另外,作者對數(shù)學(xué)處理技巧說明得非常詳細(xì),列舉了數(shù)學(xué)推導(dǎo)的中間步驟,這些通常是留給讀者自己完成的,同時強(qiáng)調(diào)了這些公式的物理解釋,幫助讀者獲得更深入的理解。書中設(shè)計(jì)的習(xí)題是內(nèi)容的重要組成部分,也是進(jìn)一步提高的出發(fā)點(diǎn)。閱讀本書需要經(jīng)典力學(xué)和電動力學(xué)的基本知識。
本書適合于初次學(xué)習(xí)等離子體物理的高年級本科生和一年級研究生,同時也適用于對等離子體現(xiàn)象以及相關(guān)領(lǐng)域諸如空間物理和應(yīng)用電磁學(xué)等感興趣的研究人員。目次:簡介;穩(wěn)恒和均勻電磁場中的帶電粒子運(yùn)動;非均勻靜磁場中的帶電粒子運(yùn)動;隨時間變化的電磁場中的帶電粒子運(yùn)動;等離子體動力學(xué)理論基礎(chǔ);平均值和宏觀變量;平衡態(tài);宏觀輸運(yùn)方程;導(dǎo)電流體的宏觀方程;等離子體電導(dǎo)率和擴(kuò)散;若干基本等離子體現(xiàn)象;磁流體動力學(xué)的簡單應(yīng)用;縮聚效應(yīng);自由空間電磁波;磁流體動力學(xué)波;冷等離子體波;暖等離子體波;熱各向同性等離子體波;熱磁化等離子體波;等離子體中粒子間相互作用;波爾茲曼和佛克爾—普朗克方程;等離子體中的輸運(yùn)過程;附錄A:常用的矢量關(guān)系;附錄B:迪卡爾坐標(biāo)和曲線坐標(biāo)中的常用關(guān)系;附錄C:物理常數(shù):附錄D:物理單位間的換算因子;附錄E:部分重要的等離子體參數(shù);附錄F:若干典型等離子體的近似量極;索引。
讀者對象:物理,化學(xué)和材料專業(yè)的高年級本科生、研究生和相關(guān)專業(yè)的科研人員。
PREFACE
1.INTRODUCTION
1.General Properties of Plasmas
2.Criteria for the Definition of a Plasma
3.The Occurrence of Plasmas in Nature
4.Applications of Plasma Physics
5.Theoretical Description of Plasma Phenomena
Problems
2.CHARGED PARTIE MOTION IN CONSTANT AND UNIFORM UNIFORM ELECTROMAGNETIC FIELDS
1.Introduction
2.Energy Conservation
3.Uniform Electrostatic Field
4.Uniform Magnetostatic Field
5.Uniform Electrostatic and Magnetostatic Fields
6.Drift Due to an External Force PREFACE
1.INTRODUCTION
1.General Properties of Plasmas
2.Criteria for the Definition of a Plasma
3.The Occurrence of Plasmas in Nature
4.Applications of Plasma Physics
5.Theoretical Description of Plasma Phenomena
Problems
2.CHARGED PARTIE MOTION IN CONSTANT AND UNIFORM UNIFORM ELECTROMAGNETIC FIELDS
1.Introduction
2.Energy Conservation
3.Uniform Electrostatic Field
4.Uniform Magnetostatic Field
5.Uniform Electrostatic and Magnetostatic Fields
6.Drift Due to an External Force
Problems
3.CHARGED PARTICLE MOTION IN NONUNIFORM MAGNETOSTATIA FIELDS
1.Introduction
2.Spatial Variation of the Magnetic Field
3.Equation of Motionin the First-Order Approximation
4.Average Force Over One Gyration Period
5.Gradient Drift
6.Parallel Acceleration of the Guiding Center
7.Curvature Drift
8.Combined Gradient-Curvature Drift
Problems
4.CHARGED PARTICLE MOTION IN TIME-VARYING ELECTROMAGNETIC FIELDS
1.Introduction
2.Slowly Time-Varying Electric Field
3.Electric Field with Arbitrary Time Variation
4.Time-Varying Magnetic Field and Space-Varying Electric Field
5.Summary of Guiding Center Drifts and Current Densities
Problems
5.ELEMENTS OF PLASMA KINETIC THEORY
1.Introduction
2.Phase Space
3.Distribution Function
4.Number Density and Average Velocity
5.The Boltzmann Equation
6.Relaxation Model for the Collision Term
7.The Vlasov Equation
Problems
6.AVERAGE VALUES AND MACROSCOPIC VARIABLES
1.Average Value of a Physical Quantity
2.Average Velocity and Peculiar Velocity
3.Flux
4.Particle Current Density
5.Momentum Flow Dyad or Tensor
6.Pressure Dyad or Tensor
7.Heat Flow Vector
8.Heat Flow Triad
9.Total Energy Flux Triad
10.Higher Moments of the Distribution Function
Problems
7.THE EQUILIBRIUM STATE
1.The Equilibrium State Distribution Function
2.The Most Probable Distribution
3.Mixture of Various Particle Species
4.Properties of the Maxwell-Boltzmann Distribution Function
5.Equilibrium in the Presence of an External Force
6.Degree of Ionization in Equilibrium and the Saha Equation
Problems
8.MACROSCOPIC TRANSPSRT EQUATIONS
1.Moments of the Boltzmann Equation
2.General Transport Equation
3.Conservation of Mass
4.Conservation of Momentum
Conservation of Energy
6.The Cold Plasma Model
7.The Warm Plasma Model
Problems
1.Macroscopic Variables for a Plasma as a Conducting Fluid
2.Continuity Equation
3.Equation of Motion
4.Energy Equation
5.Elect rodynamic Equations for a Conducting Fluid
6.Simplified Magnetohydrodynamic Equations
Problems
1.Introduction
2.The Langevin Equation
3.Linearization of the Langevin Equation
4.DC Conductivity and Electron Mobility
5.AC Conductivity and Electron Mobility
6.Conductivity with Ion Motion
7.Plasma as a Dielectric Medium
8. Free Electron Diffusion
9.Electron Diffusion in a Magnetic Field
10.Ambipolar Diffusion
11.Diffusion in a Fully Ionized Plasma
Problems
1.Electron Plasma Oscillations
2.The Debye Shielding Problem
3.Debye Shielding Using the Vlasov Equation
4.Plasma Sheath
5.Plasma Probe
Problems
1.Fundamental Equations of Magnetohydrodynamics
2.Magnetic Viscosity and Reynolds Number
3.Diffusion of Magnetic Field Lines
4.Freezing of Magnetic Field Lines to the Plasma
5.Magnetic Pressure
6.Isobaric Surfaces
7.Plasma Confinement in a Magnetic Field Problems
14.WLWCTROMAGNETIC WAVES IN FREE SPACE
1.Introduction
2.The Equilibrium Pinch
3.The Bennett Pinch
4.Dynamic Model of the Pinch
5.Instabilities in a Pinched Plasma Column
6.The Sausage Instability
7.The Kink Instability
8.Convex Field Configurations
Problems
15.MAGNETOHYDRODYNAMIC WAVES
1.The Wave Equation
2.Solution in Plane Waves
3.Harmonic Waves
4.Polarization
5.Energy Flow
6.Wave Packets and Group Velocity
Problems
16.WAVES IN COLD PLASMAS
1.Introduction
2.MHD Equations for a Compressible
3.Propagation Perpendicular to the Magnetic Field
4.Propagation Parallel to the Magnetic Field
5.Propagation at Arbitrary Directions
6.Effect of Displacement Current
7.Damping of MHD Waves Problems
5.Wave Propagation in Magnetized Cold Plasmas
6.Propagation Parallel to Bo
7.Propagation Perpendicular to Bo
8.Propagation at Arbitrary Directions
9.Some Special Wave Phenomena in Cold Plasmas
Problems
17.WSVES IN WARM PLASMAS
1.Introduction
2.Waves in a Fully Ionized Isotropic Warm Plasma
3.Basic Equations for Waves in a Warm Magnetoplasma
4.Waves in a Warm Electron Gas in a Magnetic Field
5.Waves in a Fully Ionized Warm Magnetoplasma
6.Summary
Problems
18.WSVES IN HOT ISOTROPIC PLASMAN
1.Introduction
2.Basic Equations
3.General Results for a Plane Wave
4.Electrostatic Longitudinal Wave in a Hot Isotropic Plasma
5.Transverse Wave in a Hot Isotropic Plasma
6.The Two-Stream Instability
7.Summary
Problems
19.WAVES IN HOT MAGNETIZED PLASMAS
1.Introduction
2.Wave Propagation Along the Magnetostatic Field in a Hot Plasma
3.Wave Propagation Across the Magnetostatic Field in a Hot Plasma
4.Summary
Problems
20.PARTICLE INTERACTIONS IN PLASMAS
1.Introduction
2.Binary Collisions
3.Dynamics of Binary Collisions
4.Evaluation of the Scattering Angle
5.Cross Sections
6.Cross Sections for the Hard Sphere Model
7.Cross Sections for the Coulomb Potential
8.Screening of the Coulomb Potential
Problems
21.THE BOL TZMANN AND THE FOKKER-PLANCK EQUATIONS
1.Introduction
2.The Boltzmann Equation
3.The Boltzmann's H Function
4.Boltzmann Collision Term for a Weakly Ionized Plasma
5.The Fokker-Planck Equation
Problems
22.TPANSPORT PROCESSES IN PLASMAS
1.Introduction
2.Electric Conductivity in a Nonmagnetized Plasma
3.Electric Conductivity in a Magnetized Plasma
4.Free Diffusion
5.Diffusion in a Magnetic Field
6.Heat Flow
Problems
APPENDIX A
Useful Vector Relations
APPENDIX B
Useful Relations in Cartesian and
in Curvilinear Coordinates
APPENDIX C
Physical Constants (MKSA)
APPENDIX D
Conversion Factors for Physical Units
APPENDIX E
Some Important Plasma Parameters
APPENDIX F
Approximate Magnitudes in Some Typical Plasmas
INDEX