《江蘇省專轉(zhuǎn)本考試考點(diǎn)精要·高等數(shù)學(xué)》包含江蘇省普通高校專科應(yīng)屆畢業(yè)生進(jìn)入本科階段學(xué)習(xí)招生考試要求的高等數(shù)學(xué)科目的基本內(nèi)容。本書結(jié)合江蘇省專轉(zhuǎn)本考試范圍、試卷評分、重難點(diǎn)知識(shí)以及近15年考試試題, 由中公教育江蘇專轉(zhuǎn)本考試研究院精心編寫。本書共包含八章內(nèi)容: 第一章為函數(shù)、極限、連續(xù), 主要講解函數(shù)、極限、連續(xù)的定義、運(yùn)算及其基本性質(zhì); 第二章為一元函數(shù)微分學(xué), 主要講解導(dǎo)數(shù)與微分的概念、性質(zhì)及其計(jì)算, 微分中值定理, 導(dǎo)數(shù)的應(yīng)用; 第三章為一元函數(shù)積分學(xué), 主要講解原函數(shù)的概念, 不定積分的計(jì)算, 定積分的性質(zhì)。
江蘇省專轉(zhuǎn)本考試考點(diǎn)精要·高等數(shù)學(xué)章函數(shù)、極限與連續(xù)章函數(shù)、極限與連續(xù)
考情綜述
考試大綱1.函數(shù)
(1)函數(shù)的概念及表示法;(2)函數(shù)的性質(zhì);(3)分段函數(shù)、復(fù)合函數(shù)、反函數(shù)和隱函數(shù);(4)基本初等函數(shù)和初等函數(shù)
2.極限
(1)數(shù)列極限與函數(shù)極限的定義及其性質(zhì);(2)函數(shù)的左極限和右極限;(3)無窮小量和無窮大量的概念及其關(guān)系;(4)無窮小量的性質(zhì);(5)無窮小量的比較;(6)極限的四則運(yùn)算;(7)兩個(gè)重要極限
3.連續(xù)
(1)函數(shù)連續(xù)的定義;(2)函數(shù)的間斷點(diǎn)及其分類;(3)連續(xù)函數(shù)的運(yùn)算性質(zhì)與初等函數(shù)的連續(xù)性;(4)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)重難點(diǎn)重點(diǎn)1.基本初等函數(shù)和初等函數(shù);
2.無窮小量的比較;
3.兩個(gè)重要極限;
4.函數(shù)連續(xù)的定義;
5.函數(shù)的間斷點(diǎn)及其分類難點(diǎn)1.無窮小量的比較、等價(jià)無窮小替換;
2.函數(shù)的間斷點(diǎn)及其分類真題分布年份知識(shí)點(diǎn)占比2022函數(shù)的連續(xù)、間斷點(diǎn)的類型、無窮小量的性質(zhì)、等價(jià)無窮小加洛必達(dá)法則求極限13.3%2021無窮小量的比較、函數(shù)的連續(xù)、重要極限8%2020無窮小量的性質(zhì)、函數(shù)的連續(xù)、重要極限8%2019無窮小量的比較、間斷點(diǎn)的類型、函數(shù)的連續(xù)、重要極限8%2018無窮小量的比較、間斷點(diǎn)的類型、重要極限8%2017無窮小量的比較、間斷點(diǎn)的類型、重要極限6.7%2016函數(shù)極限的定義、無窮小量的比較、重要極限8%2015無窮小量的比較、間斷點(diǎn)的類型、重要極限8%考點(diǎn)精析
知識(shí)框架
基礎(chǔ)知識(shí)精講
一、函數(shù)
(一)函數(shù)的概念及表示法
1.定義
設(shè)x與y是兩個(gè)變量,D是實(shí)數(shù)集R的某個(gè)非空子集,若對于D中的每一個(gè)x,按照對應(yīng)法則f,總有唯一確定的值y與之對應(yīng),則稱因變量y為自變量x的函數(shù),記作y=f(x)。這里的D稱為函數(shù)f的定義域,相應(yīng)的函數(shù)值的全體所構(gòu)成的集合稱為函數(shù)f的值域。
【注】①函數(shù)是從實(shí)數(shù)集到實(shí)數(shù)集的映射,它包括兩大要素:定義域和對應(yīng)法則。
②函數(shù)和變量的選取無關(guān),只要定義域和對應(yīng)法則相同,不管用什么變量表示函數(shù)的自變量和因變量,函數(shù)都是一樣的。例如:y=x2,x∈[0,1]和u=t2,t∈[0,1]表示同一個(gè)函數(shù)。
2.表示法
表示函數(shù)的主要方法有三種:解析法(公式法)、表格法、圖形法。
(1)解析法(公式法):用數(shù)學(xué)式表示自變量和因變量之間的對應(yīng)關(guān)系的方法。
(2)表格法:將一系列的自變量值與對應(yīng)的函數(shù)值列成表來表示函數(shù)關(guān)系的方法。
(3)圖形法:用坐標(biāo)平面上的點(diǎn)集{P(x,y)y=f(x),x∈D}來表示函數(shù)的方法。
(二)函數(shù)的性質(zhì)
1.有界性
設(shè)函數(shù)f(x)的定義域?yàn)镈,數(shù)集XD。如果存在正數(shù)M,使得對于任一x∈X,都有f(x)≤M,則稱f(x)在X上有界。如果這樣的M不存在,則稱f(x)在X上無界。
【注】①函數(shù)的有界性也可以通過上、下界的方式來定義:如果存在實(shí)數(shù)m和M,使得對任一x∈X,都有m≤f(x)≤M,則稱函數(shù)f(x)在X上有界。其中m和M分別稱為函數(shù)f(x)在X上的下界和上界。
②在上述定義中,m(M)是函數(shù)f(x)在X上的下(上)界,則任何比m。ū萂大)的數(shù),都是f(x)在X上的下(上)界。
③函數(shù)在X上有界的充要條件是它在X上既有上界又有下界。
2.單調(diào)性
設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間ID。如果對于區(qū)間I上任意兩點(diǎn)x1,x2,當(dāng)x1<x2時(shí),恒有
f(x1)<f(x2)(或f(x1)>f(x2)),
則稱函數(shù)f(x)在區(qū)間I上單調(diào)增加(或單調(diào)減少)。
單調(diào)增加和單調(diào)減少的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
(1)單調(diào)性的性質(zhì):
①如果f1(x)和f2(x)都是增函數(shù)(或減函數(shù)),則f1(x)+f2(x)也是增函數(shù)(或減函數(shù))。
②設(shè)f(x)是增函數(shù),如果常數(shù)C>0,則C·f(x)是增函數(shù);如果常數(shù)C<0,則C·f(x)是減函數(shù)。
③如果函數(shù)y=f(u)與函數(shù)u=g(x)增減性相同,則函數(shù)y=f[g(x)]為增函數(shù);如果函數(shù)y=f(u)與函數(shù)u=g(x)增減性相反,則函數(shù)y=f[g(x)]為減函數(shù)。
(2)常見初等函數(shù)的單調(diào)區(qū)間:
常見函數(shù)單調(diào)增區(qū)間單調(diào)減區(qū)間y=x2+ax+b- a2,+∞-∞,- a2y=ex(-∞,+∞)無y=lnx(0,+∞)無y=sinx2kπ- π2,2kπ+ π22kπ+ π2,2kπ+ 3π2y=cosx[2kπ-π,2kπ][2kπ,2kπ+π]y=1x無(-∞,0),(0,+∞)3.奇偶性
設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對稱。如果對于任一x∈D,都有f(-x)=f(x),則稱f(x)為偶函數(shù);如果對于任一x∈D,都有f(-x)=-f(x),則稱f(x)為奇函數(shù)。
(1)奇偶性的性質(zhì):
①偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于原點(diǎn)對稱。
②如果f1(x)和f2(x)都是偶函數(shù)(或奇函數(shù)),則對任意的常數(shù)k1,k2∈R,k1 f1(x)+k2 f2(x)仍是偶函數(shù)(或奇函數(shù))。
③如果f1(x)和f2(x)的奇偶性相同,則f1(x)·f2(x)為偶函數(shù);如果f1(x)和f2(x)的奇偶性相反,則f1(x)·f2(x)為奇函數(shù)。
(2)常見的偶函數(shù):
y=xk(k為偶數(shù)),y=cosx,y=x,
f(x),f(x)+f(-x)2, f(x)·f(-x),其中f(x)是定義在對稱區(qū)間上的任意函數(shù)。
常見的奇函數(shù):
y=xk(k為奇數(shù)),y=sinx,y=tanx,y=cotx,y=ln(x+1+x2),
f(x)-f(-x)2,其中f(x)是定義在對稱區(qū)間上的任意函數(shù)。
4.周期性
設(shè)函數(shù)f(x)的定義域?yàn)镈,如果存在一個(gè)正數(shù)T,使得對任一x∈D有x±T∈D,且f(x+T)=f(x)恒成立,則稱f(x)為周期函數(shù),T稱為f(x)的周期。一般周期函數(shù)的周期是指小正周期。
【注】①如果f(x)以T為小正周期,則對任意的非零常數(shù)C,Cf(x)仍然以T為小正周期, f(Cx)以TC為小正周期。
②如果f1(x)和f2(x)都以T為周期,則對于任意的常數(shù)k1,k2∈R,k1f1(x)+k2f2(x)仍然以T為周期。注意這時(shí)小正周期有可能縮小,如f1(x)=cos2x+sinx,f2(x)=sinx都以2π為小正周期,但f1(x)-f2(x)=cos2x以π為小正周期。
(三)函數(shù)的運(yùn)算
1.四則運(yùn)算
設(shè)函數(shù)f(x)和g(x)的定義域分別為D1和D2,且D=D1∩D2≠,則這兩個(gè)函數(shù)經(jīng)過四則運(yùn)算之后能形成新的函數(shù):
和(差)運(yùn)算:f(x)±g(x),x∈D;
積運(yùn)算:f(x)·g(x),x∈D;
商運(yùn)算:f(x)g(x),x∈D\{xg(x)=0,x∈D}。
2.復(fù)合函數(shù)
設(shè)函數(shù)y=f(u)的定義域?yàn)镈1,函數(shù)u=g(x)的定義域?yàn)镈2。如果g(x)的值域g(D2)包含于f(u)的定義域D1,則可以定義函數(shù)y=f[g(x)],x∈D2為函數(shù)f(u)與g(x)的復(fù)合函數(shù),記作y=f[g(x)]或fg。
【注】①復(fù)合函數(shù)的基本思想是把y=f(x),x∈D1中的x進(jìn)行推廣,變成一個(gè)新的函數(shù),這是我們認(rèn)識(shí)和理解函數(shù)的基本方式。
②注意能夠進(jìn)行復(fù)合的前提條件是g(x)的值域g(D2)包含于f(u)的定義域D1。如果該條件不滿足,只要g(x)的值域g(D2)和f(u)的定義域D1的交集不是空集,復(fù)合運(yùn)算也可以進(jìn)行,只不過此時(shí)復(fù)合之后函數(shù)的定義域變成了{(lán)xx∈D2且g(x)∈D1}。
3.反函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镈,其值域?yàn)閒(D)。如果對于每一個(gè)y∈f(D),都有唯一確定的x∈D,使得y=f(x)(我們將該對應(yīng)法則記作f -1),則這個(gè)定義在f(D)上的函數(shù)x=f -1(y)就稱為函數(shù)y=f(x)的反函數(shù)。
【注】①不是所有的函數(shù)都有反函數(shù)。函數(shù)y=f(x),x∈D存在反函數(shù)的充要條件是對于定義域D中任意兩個(gè)不相等的自變量x1,x2,有f(x1)≠f(x2)。一般來說,嚴(yán)格單調(diào)的函數(shù)一定有反函數(shù)。
②在同一坐標(biāo)平面上,函數(shù)y=f(x)與其反函數(shù)y=f-1(x)的圖像關(guān)于直線y=x對稱。
(四)常見的函數(shù)類型
1.初等函數(shù)
(1)常用的基本初等函數(shù)有五類:指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)及反三角函數(shù)。
函數(shù)
名稱函數(shù)的記號函數(shù)的圖像函數(shù)的性質(zhì)指數(shù)
函數(shù)y=ax(a>0,a≠1)a)不論x為何值,y總為正數(shù);
b)當(dāng)x=0時(shí),y=1對數(shù)
函數(shù)y=logax(a>0,a≠1) a)其圖像總位于y軸右側(cè),恒過(1,0)點(diǎn);
b)當(dāng)a>1時(shí),函數(shù)y=logax在區(qū)間(0,1)的值為負(fù),在區(qū)間(1,+∞)的值為正,在定義域內(nèi)單調(diào)遞增冪函數(shù)y=xa,a為任意實(shí)數(shù)
這里只畫出部分函數(shù)圖像的
象限部分 令a=mn(mn是簡分?jǐn)?shù)),則
a)當(dāng)m為偶數(shù)、n為奇數(shù)時(shí),xa是偶函數(shù);
b)當(dāng)m,n都是奇數(shù)時(shí),xa是奇函數(shù);
c)當(dāng)m為奇數(shù)、n為偶數(shù)時(shí),xa沒有奇偶性(續(xù)表)
函數(shù)
名稱函數(shù)的記號函數(shù)的圖像函數(shù)的性質(zhì)三角
函數(shù)y=sinx(正弦函數(shù))
這里只寫出了正弦函數(shù) a)正弦函數(shù)是以2π為周期的函數(shù);
b)正弦函數(shù)是奇函數(shù)且sinx≤1反三角
函數(shù)y=arcsinx(反正弦函數(shù))
這里只寫出了反正弦函數(shù)由于此對應(yīng)法則確定了一個(gè)多值函數(shù),因此將此值域限制在- π2,π2,并稱其為反正弦函數(shù)的主值(2)初等函數(shù):由常數(shù)和基本初等函數(shù)經(jīng)過有限次的四則運(yùn)算和有限次的函數(shù)復(fù)合步驟所構(gòu)成并可用一個(gè)式子表示的函數(shù)。
2.分段函數(shù)
對于自變量的不同取值范圍,有不同的對應(yīng)法則,這樣的函數(shù)叫作分段函數(shù)。
(1)分段函數(shù)的基本形式:
f(x)=f1(x),x∈I1,f2(x),x∈I2,fn(x),x∈In。
(2)隱含的分段函數(shù):
①絕對值函數(shù):
f(x)=x=x,x≥0,-x,x<0,
其定義域是(-∞,+∞),值域是[0,+∞)。
②取整函數(shù):f(x)=[x]表示不超過x的大整數(shù)。
③大值、小值函數(shù):y=max{f(x),g(x)},y=min{f(x),g(x)}。
3.隱函數(shù)
如果變量x和y滿足方程F(x,y)=0,當(dāng)x取區(qū)間I內(nèi)的任一值時(shí),相應(yīng)地總有滿足該方程的唯一的y值存在,則這樣確定的函數(shù)關(guān)系y=y(x)稱為由方程F(x,y)=0確定的隱函數(shù)。
4.由參數(shù)方程定義的函數(shù)
若參數(shù)方程x=φ(t),y=ψ(t),α≤t≤β確定了y與x間的函數(shù)關(guān)系,則稱此函數(shù)關(guān)系所表達(dá)的函數(shù)為由參數(shù)方程所確定的函數(shù)。
二、極限
(一)極限的概念
1.數(shù)列極限
設(shè){xn}為一數(shù)列,a為常數(shù),則limn→∞xn=a對任意的ε>0,存在正整數(shù)N,使得當(dāng)n>N時(shí),有xn-a<ε。
【注】①數(shù)列極限limn→∞xn=a的含義:當(dāng)n無限增大時(shí),數(shù)列的值無限趨近于a。
②對極限過程n→∞要注意兩點(diǎn):一是這里的無窮一定是正無窮;二是n只能取正整數(shù)。
2.函數(shù)極限
設(shè)函數(shù)f(x)的定義域?yàn)镽,A為一個(gè)常數(shù),則limx→∞ f(x)=A對任意的ε>0,存在X>0,使得當(dāng)x>X時(shí),有f(x)-A<ε。類似可定義limx→+∞ f(x)=A,l