時(shí)代教育國(guó)外高校優(yōu)秀教材精選:線性代數(shù)引論(英文版·原書第5版)
定 價(jià):59 元
- 作者:(美),李W·約翰遜 ,等 著
- 出版時(shí)間:2012/7/1
- ISBN:9787111106289
- 出 版 社:機(jī)械工業(yè)出版社
- 中圖法分類:O151.2
- 頁(yè)碼:616
- 紙張:膠版紙
- 版次:5
- 開(kāi)本:16開(kāi)
《時(shí)代教育國(guó)外高校優(yōu)秀教材精選:線性代數(shù)引論(英文版·原書第5版)》內(nèi)容覆蓋了我國(guó)現(xiàn)行理工科大學(xué)線性代數(shù)課程的全部?jī)?nèi)容,與我國(guó)現(xiàn)行的線性代數(shù)教學(xué)大綱和教材體系比較接近。其中包括矩陣與線性方程組、二維和三維空間、向量空間Rn、特征值問(wèn)題、向量空間和線性變換、行列式、特征值及其應(yīng)用等。本書的編寫采用模塊式結(jié)構(gòu),便于廣大教師根據(jù)教學(xué)需要對(duì)內(nèi)容進(jìn)行取舍。本書通過(guò)例子介紹了非常流行的教學(xué)軟件Matlab在線性代數(shù)中的應(yīng)用,并且每章結(jié)尾都附有專門用Matlab做的練習(xí)題!稌r(shí)代教育國(guó)外高校優(yōu)秀教材精選:線性代數(shù)引論(英文版·原書第5版)》可供理工科、經(jīng)濟(jì)管理各專業(yè)學(xué)生作為教科書或參考書。也可供科技人員和自學(xué)者參考。
《時(shí)代教育國(guó)外高校優(yōu)秀教材精選:線性代數(shù)引論(英文版·原書第5版)》系統(tǒng)新穎、內(nèi)容豐富、聯(lián)系實(shí)際、語(yǔ)言通暢,且結(jié)合數(shù)學(xué)軟件提供了一個(gè)現(xiàn)代化的學(xué)習(xí)環(huán)境,相對(duì)于國(guó)內(nèi)現(xiàn)行教學(xué)大綱,教師便于取舍內(nèi)容組織教學(xué),不失為一本很好的教科書和教學(xué)參考書。本書可供理工科、經(jīng)濟(jì)管理各專業(yè)學(xué)生作為學(xué)習(xí)線性代數(shù)的教科書或教學(xué)參考書,也可供科技人員和自學(xué)者參考。
MATRICES AND SYSTEMS OF LINEAR EQUATIONS
1.1 Introduction to Matrices and Systems of Linear Equatio
1.2 Echelon Form and Gauss-Jordan Elimination
1.3 Co istent Systems of Linear Equatio
1.4 Applicatio (Optional)
1.5 Matrix Operatio
1.6 Algebraic Properties of Matrix Operatio
1.7 Linear Independence and No ingular Matrices
1.8 Data Fitting, Numerical Integration, and Numerical Differentiation (Optional)
1.9 Matrix Inve es and Their Properties
VECTORS IN 2-SPACE AND 3-SPACE
2.1 Vecto in the Plane
2.2 Vecto in Space
2.3 The Dot Product and the Cross Product
2.4 Lines and Planes in Space
THE VECTOR SPACE Rn
3.1 Introduction
3.2 Vector Space Properties of Rn
3.3 Examples of Subspaces
3.4 Bases for Subspaces
3.5 Dime ion
3.6 Orthogonal Bases for Subspaces
3.7 Linear Tra formatio from Rn to Rm
3.8 Least-Squares Solutio to Inco istent Systems, with Applicatio to Data Fitting
3.9 Theory and Practice of Least Squares
THE EIGENVALUE PROBLEM
4.1 The Eigenvalue Problem for (2x2) Matrices
4.2 Determinants and the Eigenvalue Problem
4.3 Elementary Operatio and Determinants (Optional)
4.4 Eigenvalues and the Characteristic Polynomial
4.5 Eigenvecto and Eige paces
4.6 Complex Eigenvalues and Eigenvecto
4.7 Similarity Tra formatio and Diagonalization
4.8 Difference Equatio ; Markov Chai ; Systems of Differential Equatio (Optional)
VECTOR SPACES AND LINEAR TRANSFORMATIONS
5.1 Introduction
5.2 Vector Spaces
5.3 Subspaces
5.4 Linear Independence, Bases, and Coordinates
5.5 Dime ion
5.6 Inner-Product Spaces, Orthogonal Bases, and Projectio (Optional)
5.7 Linear Tra formatio
5.8 Operatio with Linear Tra formatio
5.9 Matrix Representatio for Linear Tra formatio
5.10 Change of Basis and Diagonalization
DETERMINANTS
6.1 Introduction
6.2 Cofactor Expa io of Determinants
6.3 Elementary Operatio and Determinants
6.4 Cramer's Rule
6.5 Applicatio of Determinants: Inve es and Wronksia
EIGENVALUES AND APPLICATIONS
7.1 Quadratic Forms
7.2 Systems of Differential Equatio
7.3 Tra formation to Hessenberg Form
7.4 Eigenvalues of Hessenberg Matrices
7.5 Householder Tra formatio
7.6 The QR Factorization and Least-Squares Solutio
7.7 Matrix Polynomials and the Cayley-Hamilton Theorem
7.8 Generalized Eigenvecto and Solutio of Systems of Differential Equatio
APPENDIX: AN INTRODUCTION TO MATLAB
ANSWERS TO SELECTED ODD-NUMBERED EXERCISES
INDEX