本書旨在介紹量子光學中的量子統(tǒng)計力學應用方法和其在單模激光和光學雙穩(wěn)態(tài)中的量子理論中的應用。和推導Fokker-Planck方程的更標準方法一起討論了Drummond 和Gardiner的廣義表示。特別闡述了用正p表示表述的光學雙穩(wěn)態(tài)理論和小的雙穩(wěn)態(tài)系統(tǒng)。這是一本研究生級別的教程,是連接主方程方法和當前研究的一座橋梁。
目次:主方程和Fokker-Planck方程:量子力學中的耗散:主方程方法;雙能級原子和 自激發(fā)發(fā)射;電磁場的量子-經(jīng)典對應:Glauber-Sudarshan P表示;電磁場Ⅱ的量子-經(jīng)典對應: P,Q和Wigner表示;Fokker-Planck方程和*微分方程;雙能級原子的量子-經(jīng)典對應;單模型均勻展寬激光器Ⅰ:基礎;單模型均勻展寬激光器Ⅱ:相變空間分析。
讀者對象:物理、光學專業(yè)的研究生和研究人員。
Volume 1. Master Equations and Fokker-Planck Equations
1. Dissipation in Quantum Mechanics
The Master Equation Approach
1.1 Introduction
1.2 Inadequacy of an Ad Hoc Approach
1.3 System Plus R,eservoir Approach
1.3.1 The Schrodinger Equation in Integro-Differential Form
1.3.2 Born and Markov Approximations
1.3.3 The Markov Approximation and Reservoir Correlations
1.4 The Damped Harmonic Oscillator
1.4.1 Master Equation for the Damped Harmonic Oscillator
1.4.2 Some Limitations
1.4.3 Expectation Values and Commutation Relations
1.5 Two-Time Averages and the Quantum Regression Formula
1.5.1 Formal R,esults
1.5.2 Quantum Regression for a Complete Set of Operators
1.5.3 Correlation Functions for the Damped Harmonic Oscillator
2. Two-Level Atoms and Spontaneous Enussion
2.1 Two-Level Atom as a Pseudo-Spin System
2.2 Spontaneous Emission in the Master Equation Approach
2.2.1 Master Equation for a R,adiatively Damped Two-Level Atom
2.2.2 The Einstein A Coefficient
2.2.3 Matrix Element Equations, Correlation Functions, and Spontaneous Emission Spectrum
2.2.4 Phase Destroying Processes
2.3 Resonance Fluorescence
2.3.1 The Scattered Field
2.3.2 Master Equation for a Two-Level Atom
Driven by a Classical Field
2.3.3 Optical Bloch Equations and Dressed States
2.3.4 The Fluorescence Spect.rum
2.3.5 Seconcl-Order Coherence
2.3.6 Photon Antibunching and Squeezing
3. Quantum-Classical Correspondence for the Electromagnetic Field I:
The Glauber-Sudarshan P Representation
3.1 The Glauber-Sudarshan P Representation
3.1.1 Coherent States
3.1.2 Diagonal Representation for the Density Operator Using Coherent States
3.1.3 Examples: Coherent States, Thermal States, and Fock States
3.1.4 Fokker-Planck Equation for the Damped Harmonic Oscillator
3.1.5 Solution of the Fokker-Planck Equation
3.2 The Characteristic Function for Normal-Ordered Averages
3.2.1 Operator Averages and the Characteristic Function
3.2.2 Derivation of the Fokker-Planck Equation Using the Characteristic Function
……
Volume 2. Modern Topics